Forta LDX 2101 has good resistance to uniform corrosion due to the high chromium content. For guidance on material selection in a large number of environments capable of causing uniform corrosion, consult the
tables and isocorrosion diagrams in the Corrosion tables -webpage.
Chloride ions in a neutral or acidic environment facilitate local breakdown of the passive layer. As a result, pitting and crevice corrosion can propagate at a high rate, causing corrosion failure in a short time. Since the attack is small and may be covered by corrosion products or hidden in a crevice, it often remains undiscovered until perforation or leakage occurs. Resistance to pitting corrosion is determined mainly by the content of chromium, molybdenum, and nitrogen content. Forta LDX 2101 has good resistance to pitting and crevice corrosion due to the chromium and nitrogen content.
Forta LDX 2101 has good resistance to chloride-induced stress corrosion cracking. This form of corrosion is a combination of stresses in the material and a corrosive environment, mainly at elevated temperatures. Stresses in the material can be a result of fabrication, like forming or welding.
PRE Pitting Resistant Equivalent calculated using the formula: PRE = %Cr + 3.3 x %Mo + 16 x %N
CPT Corrosion Pitting Temperature as measured in the Avesta Cell (ASTM G 150), in a 1M NaCl solution (35,000 ppm or mg/l chloride ions).
CCT Critical Crevice Corrosion Temperature is the critical crevice corrosion temperature which is obtained by laboratory tests according to ASTM G 48 Method F